HSR: L 1/2-regularized sparse representation for fast face recognition using hierarchical feature selection

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Selection in Face Recognition: A Sparse Representation Perspective

In this paper, we examine the role of feature selection in face recognition from the perspective of sparse representation. We cast the recognition problem as finding a sparse representation of the test image features w.r.t. the training set. The sparse representation can be accurately and efficiently computed by `-minimization. The proposed simple algorithm generalizes conventional face recogni...

متن کامل

Sparse multi-stage regularized feature learning for robust face recognition

The major limitation in current facial recognition systems is that they do not perform very well in uncontrolled environments, that is, when faces present variations in pose, illumination, facial expressions and environment. This is a serious obstacle in applications such as law enforcement and surveillance systems. To address this limitation, in this paper we introduce an improved approach to ...

متن کامل

Face Recognition Using Sparse Representation

Many classic and contemporary face recognition algorithms work well on public data sets, but degrade sharply when they are used in a real recognition system. This is mostly due to the difficulty of simultaneously handling variations in illumination, image misalignment, and occlusion in the test image. We consider a scenario where the training images are well controlled and test images are only ...

متن کامل

Sparse Representation for Face Recognition

Sparse representation has attracted a great deal of attention in the past decade. Famous transforms such as discrete Fourier transform, wavelet transform and singular value decomposition are used to sparsely represent the signals. The aim of these transforms is to reveal certain structures of a signal and representation of these structures in a compact form. Therefore, sparse representation pro...

متن کامل

Feature Selection via Sparse Approximation for Face Recognition

Inspired by biological vision systems, the over-complete local features with huge cardinality are increasingly used for face recognition during the last decades. Accordingly, feature selection has become more and more important and plays a critical role for face data description and recognition. In this paper, we propose a trainable feature selection algorithm based on the regularized frame for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Neural Computing and Applications

سال: 2015

ISSN: 0941-0643,1433-3058

DOI: 10.1007/s00521-015-1907-y